
Computer Science

ey^n

pncqpjd£F£ m&wjxafrfr-

DISTRIBUTION STATEMENT A-
Approved for Public Release -

Distribution Unlimited

Twelf User's Guide
Version 1.2

Frank Pfenning and Carsten Schürmann

November 13, 1998

CMU-CS-98-173

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This user's guide describes the current version of a succession of implementa-
tions of the logical framework LF. It documents the syntax, term reconstruc-
tion, and operational semantics already available in an earlier implementa-
tion called Elf. The new features described here include a mode checker, a
termination checker, an experimental theorem prover for verifying proper-
ties of Elf programs, and an Emacs interface. The software itself is available
through the Twelf home page at http://www.cs.cmu.edu/~twelf.

This work was sponsored by NSF Grant CCR-9619584.
The views and conclusions contained in this document are those of the author and

should not be interpreted as representing the official policies, either expressed or implied,
of NSF or the U.S. Government.

jjjXG G$J£I£+* ^Z'*-*^-*- :;jp ö

Keywords: logical frameworks, logic programming, automated deduc-
tion

Twelf User's Guide
Version 1.2

Frank Pfenning and Carsten Schuermann

Table of Contents

1 Introduction 1
1.1 New Features \

1.2 Quick Start 3

2 Lexical Conventions 5
2.1 Reserved Characters 5
2.2 Identifiers 6

3 Syntax 7
3.1 Grammar 7

3.2 Constructor Declaration 8
3.3 Definitions 9
3.4 Operator Declaration 9
3.5 Name Preferences 10
3.6 Sample Signature \\

4 Term Reconstruction 13
4.1 Implicit Quantifiers 13
4.2 Implicit Arguments 14
4.3 Strict Occurrences 15
4.4 Strict Definitions 16
4.5 Type Ascription 17
4.6 Error Messages 18

5 Logic Programming 19
5.1 Query Declaration 19
5.2 Solve Declaration 20
5.3 Interactive Queries 20
5.4 Sample Trace 21
5.5 Operational Semantics 23
5.6 Sample Program 24

6 Modes 27
6.1 Short Mode Declaration 27
6.2 Full Mode Declaration 29
6.3 Mode Checking 30

ii Twelf User's Guide

7 Termination 31
7.1 Termination Declaration 31
7.2 Subterm Ordering 33
7.3 Lexicographic Orders 35
7.4 Simultaneous Orders 35
7.5 Mutual Recursion 36

8 Theorem Prover 39
8.1 Theorem Declaration 39
8.2 Sample Theorems 40
8.3 Proof Steps 41
8.4 Search Strategies 42

8.5 Proof Realizations 42

9 ML Interface 45
9.1 Configurations 45
9.2 Loading Files 46
9.3 Environment Parameters 47
9.4 Timing Statistics 48
9.5 Twelf Signature 48

10 Twelf Server 51
10.1 Server Types 51
10.2 Server Commands 51

11 Emacs Interface 55
11.1 Twelf Mode 55
11.2 Editing Commands 56
11.3 Type Checking Commands 56
11.4 Error Tracking 57
11.5 Server State 58
11.6 Info File 59
11.7 Tags Files 59
11.8 Twelf Timers 60
11.9 Twelf-SML Mode 60
11.10 Emacs Variables 61
11.11 Syntax Highlighting 62
11.12 Emacs Initialization 62
11.13 Command Summary 63

12 Installation 65

Ill

13 Examples 67

Index 69

iv Twelf User's Guide

Chapter 1: Introduction

1 Introduction

Twelf is the current version of a succession of implementations of the logical framework LF.
Previous systems include Elf (which provided type reconstruction and the operational semantics
reimplemented in Twelf) and MLF (which implemented module-level constructs loosely based on
the signatures and functors of ML still missing from Twelf).

Twelf should be understood as research software. This means comments, suggestions, and
bug reports are extremely welcome, but there are no guarantees regarding response times. The
same remark applies to these notes which constitute the only documentation on the present Twelf
implementation.

For current information including download instructions, publications, and mailing list, see the
Twelf home page at http: //www. cs. emu. edu/"twelf/.

Below we state the typographic conventions in this manual.

code for Twelf or ML code

"samp' for characters and small code fragments

metav&r for placeholders in code

keyboard for input in verbatim examples

KEY for keystrokes

math for mathematical expressions

emph for emphasized phrases

File names for examples given in this guide are relative to the main directory of the Twelf in-
stallation. For example 'examples/guide/nd.elf may be found in
Vusr/local/twelf/examples/guide/nd.elf if Twelf was installed into the '/usr/local/'direc-
tory.

1.1 New Features

While the underlying type theory has not changed, the Twelf implementation differs from older
Elf implementation in a few ways. Mostly, these are simplifications and improvements. The main

Twelf User's Guide

feature which has not yet been ported is the Elf server interface to Emacs. Also, while the type
checker is more efficient now, the operational semantics does not yet incorporate some of the
optimizations of the older Elf implementations and is therefore slower.

Syntax (see Chapter 3 [Syntax], page 7)
The quote "' character is no longer a special character in the lexer, and '=' (equality)
is now a reserved identifier. The syntax of '/name declarations has changed by allowing
only one preferred name to be specified. Also, '/.name, '/infix, '/prefix and '/postfix
declarations must be terminated by a period '.' which previously was optional. Further,
single lines comments now must start with "/wintespace' or "/'/' in order to avoid
misspelled keywords of the form "/.keyword1 to be ignored.

Type theory

Elf 1.5 had two experimental features which are not available in Twelf: polymorphism
and the classification of type as a type.

Definitions (see Section 3.3 [Definitions], page 9)
Twelf offers definitions which were not available in Elf.

Searching for definitions (see Section 5.2 [Solve Declaration], page 20)
Elf had a special top-level query form sigma [x:A] B which searched for a solution M
: A and then solved the result of subsituting M for x in B. In Twelf this mechanism
has been replaced by a declaration '/solve c : A which searches for a solution M : A
and then defines c = M : A, where the remaining free variables are implicitly universally
quantified.

Query declarations (see Section 5.1 [Query Declaration], page 19)

Twelf allows queries in ordinary Elf files as "/query' declarations. Queries are specified
with an expected number of solutions, and the number of solutions to search for, which
can be used to test implementations.

Operational semantics (see Section 5.5 [Operational Semantics], page 23)
Twelf eliminates the distinction between static and dynamic signatures. Instead, de-
pendent function types {x:A> B where x occurs in the normal form of B are treated
statically, while non-dependent function type A -> B or B <- A or {x:A} B where x does
not occur in B are treated dynamically.

Modes (see Chapter 6 [Modes], page 27)

Twelf offers a mode checker which was only partially supported in Elf.

Termination (see Chapter 7 [Termination], page 31)

Twelf offers a termination checker which can verify that certain programs represent
decision procedures.

Chapter 1: Introduction

Theorem prover (see Chapter 8 [Theorem Prover], page 39)

Although very limited at present, an experimental prover for theorems and meta-
theorems (that is, properties of signatures) is now available. It does not yet support
lemmas or meta-hypothetical reasoning, which are currently under development.

Emacs interface (see Chapter 11 [Emacs Interface], page 55)
The Elf mode has remained basically unchanged, but the Elf server interface has not
yet been ported.

1.2 Quick Start

Assuming you are running on a Unix system with SML of New Jersey already installed (see
Chapter 12 [Installation], page 65) you can build Twelf as follows. Here "/,' is assumed to be the
shell prompt. You may need to edit the file 'Makefile' to give the proper location for sml-cm.

*/, gunzip twelf-1-2.tar.gz
'/. tar -xf twelf-1-2.tar
'/, cd twelf
'/, make
'/, bin/twelf-server
Twelf 1.2, Aug 27 1998
•/.'/. OK •/.'/.

You can now load the examples used in this guide and pose an example query as shown below.
The prompt from the Twelf top-level is '?-'. To drop from the Twelf top-level to the ML top-level,
type C-c (CTRL c). To exit the Twelf server you may issue the quit command or type C-d (CTRL
c).

Config.read examples/guide/sources.cfg
Config.load
top
?- of (lam [x] x) T.
Solving...
T = arrow Tl Tl.
More? y
No more solutions
?- C-c
interrupt
y.y. OK y,y.
quit

Twelf User's Guide

Chapter 2: Lexical Conventions

2 Lexical Conventions

Lexical analysis of Twelf has purposely been kept simple, with few reserved characters and
identifiers. As a result one may need to use more whitespace to separate identifiers than in other
languages. For example, 'A->B' or 'A+B' are single identifiers, while 'A -> B' and 'A + B' both consist
of 3 identifiers.

During parsing, identifiers are resolved as reserved identifiers, constants, bound variables, or
free variables, following the usual rules of static scoping in lambda-calculi.

2.1 Reserved Characters

The following table lists the reserved characters in Twelf.

:' colon, constant declaration or ascription

.' period, terminates declarations

(' ')' parentheses, for grouping terms

[' ']' brackets, for lambda abstraction

{' '}' braces, for quantification (dependent function types)

wiiitespace

separates identifiers; one of space, newline, tab, carriage return, vertical tab or formfeed

"/.' introduces comments or special keyword declarations

"/.wMtespace' T/.'

comment terminated by the end of the line, may contain any characters

"/.{' '}'/.' delimited comment, nested "/,{' and '}'/,' must match

"Lkeyword''

various declarations

"/,.' end of input stream

"" doublequote, disallowed

other printing characters
identifier constituents

Twelf User's Guide

2.2 Identifiers

All printing characters that are not reserved can be included in identifiers, which are separated
by whitespace or reserved characters. In particular, A->B is an identifier, whereas A -> B stands for
the type of functions from A to B.

An uppercase identifier is one which begins with an underscore '_' or a letter in the range 'A'
through "Z". A lowercase identifier begins with any other character except a reserved one. Numbers
also count as lowercase identifiers and are not interpreted specially. Free variables in a declaration

must be uppercase, bound variables and constants may be either uppercase or lowercase identifiers.

There are also four reserved identifiers with a predefined meaning which cannot be changed.
Keep in mind that these can be constituents of other identifers which are not interpreted specially.

->' function type

<-' reverse function type

_' hole, to be filled by term reconstruction

=' definition

type' the kind type

Constants have static scope, which means that they can be shadowed by subsequent declarations.
A shadowed identifier (which can no longer be referred to in input) is printed as 7,id'/,. The printer
for terms renames bound variables so they do not shadow constants.

Free uppercase identifiers in declarations represent schematic variables. In order to distinguish
them from other kinds of variables and constants they are printed as ''id' (backquote, followed by
the identifer name) in error messages.

Chapter 3: Syntax

3 Syntax

In LF, deductive systems are represented by signatures consisting of constant declarations. Twelf
implements declarations in a straightforward way and generalizes signatures by also allowing defi-
nitions, which are semantically transparent. Twelf currently does not have module-level constructs
so that, for example, signatures cannot be named. Instead, multiple signatures can be manipulated
in the programming environment using configurations (see Section 9.1 [Configurations], page 45).

The LF type theory which underlies LF is stratified into three levels: objects M and JV, types
A and B. and kinds K. Twelf does not syntactically distinguish these levels and simply uses one
syntactic category of term. Similarly, object-level constants c and type-level constants a as well as
variables share one name space of identifiers.

In explanations and examples we will use letters following the mathematical conventions above
to clarify the roles of various terms. We also use U and V to stand for arbitrary terms.

3.1 Grammar

The grammar below defines the non-terminals sig, decl, term and uses the terminal id which
stands for identifers (see Section 2.2 [Identifiers], page 6). The comments show the meaning in LF.
There are various special declarations '/.keyword such as */,inf ix or '/.theorem which are omitted
here and detailed in the appropriate sections.

sig

decl

I decl sig

= id : term.
id : term = term,
id = term.
_ : term = term.
_ = term,
'/.infix ixdecl.
'/.prefix pxdecl.
'/.postfix pxdecl.
'/.name id id.
'/.query qdecl.
'/.solve id : term,
'/.mode mdecl.
'/.terminates tdecl.
'/theorem thdecl.
'/.prove pdecl.

'/, Empty signature
•/, Constant declaration

'/, a : K or c : A
'/. d : A = M
'/. d = M
'/, anonymous definition, for type-checking
'/, anonymous definition, for type-checking
'/, operator declaration
'/, operator declaration
'/, operator declaration
'/, name preference declaration
*/, query declaration
'/, solve declaration
'/, mode declaration
'/, termination declaration
'/, theorem declaration
'/, prove declaration

Twelf User's Guide

term ::= type
id
term -> term
term <- term
{id : term} term
[id : term] term
term term
term : term

{id} term
[id] term

'/. type
'/, variable x or constant a or c
'/. A -> B
'/. A <- B, same as B -> A
'I, Pi x : A. K or Pi x : A. B
'/, lambda x : A. B or lambda x : A. M
'/. A M or M N
'/, explicit type ascription
'/, hole, to be filled by term reconstruction
•/, same as {id:_} term
•/, same as [id:_] term

The constructs {x :U} V and [x :U] V bind the identifier x in V, which may shadow other constants

or bound variables. As usual in type theory, U -> V is treated as an abbreviation for {x:U} V where

x does not appear in V. However, there is a subtlety in that the latter allows an implicit argument

(see Section 4.2 [Implicit Arguments], page 14) to depend on x while the former does not.

In the order of precedence, we disambiguate the syntax as follows:

1. Juxtaposition (application) is left associative and has highest precedence.

2. User declared infix, prefix, or postfix operators (see below).

3. '->' is right and '<-' left associative with equal precedence.

4. ':' is left associative.

5. '{}' and ' [] ' are weak prefix operators.

For example, the following are parsed identically:

d : a <- b <- {x} c x -> p x.
d : ({x} c x -> p x) -> b -> a.
d : ((a <- b) <- ({x:_} ((c x) -> (p x)))).

3.2 Constructor Declaration

New type families or object constructors can be introduced with

condec ::= id : term. '/, a : K or c : A

Here a stands for a type family and K for its kind, whereas c is an objects constructor and A its

type. Identifiers are resolved as follows:

Chapter 3: Syntax

1. Any identifier x may be bound by the innermost enclosing binder for x of the form {x:A> or
Cx:A].

2. Any identifer which is not explicitly bound may be a declared or defined constant.

3. Any uppercase identifier, that is, identifier starting with '_' (underscore) or an upper case
letter, may be a free variable. Free variables are interpreted universally and their type is
inferred from their occurrences (see Chapter 4 [Term Reconstruction], page 13).

4. Any other undeclared identifier is flagged as an error.

3.3 Definitions

Twelf supports notational definitions, currently employing a restriction to allow a simple and
efficient internal treatment. Semantically, definitions are completely transparent, that is, both for
type checking and the operational semantics definitions may be expanded.

defn ::= id : term = term. '/, d : A = M
I id = term. 7, d = M

where the second is equivalent to id : _ = term. Definitions can only be made on the level of
objects, not at the level of type families because the interaction of such definitions with logic
programming search has not been fully investigated.

In order to avoid always expanding definitions, Twelf currently only permits strict definitions
(see Section 4.4 [Strict Definitions], page 16). A definition of a constant c is strict if all arguments
to c (implicit or explicit) have at least one strict occurrence (see Section 4.3 [Strict Occurrences],
page 15) in the right-hand side of the definition, and the right-hand side contains at least one
constant. In practice, most notational definitions are strict. For some examples, see Section 3.6
[Sample Signature], page 11 and Section 4.4 [Strict Definitions], page 16.

The power of definitions in Twelf, however, is severely limited by the lack of recursion. It should
only be thought of as notational definition, not as a computational mechanism. Complex operations
need to be defined as logic programs, taking advantage of the operational semantics assigned to
signatures (see Chapter 5 [Logic Programming], page 19).

3.4 Operator Declaration

The user may declare constants to be infix, prefix, or postfix operators. Operator precedence
properties are associated with constants, which must therefore already have been declared with a

10 Twelf User's Guide

type or kind and a possible definition. It is illegal to shadow an infix, prefix, or postfix operator

with a bound variable. We use nat for the terminal natural numbers.

assoc ::= none '/, not associative
I left '/, left associative
I right '/, right associative

prec : := nat '/. 0 <= prec < 10000

ixdecl ::= assoc prec id

pxdecl ::= prec id

decl ::= ...
I '/.infix ixdecl.
I '/.pref ix pxdecl.
I '/.postfix pxdecl.

During parsing, ambiguous successive operators of identical precedence such as a <- b -> c are
flagged as errors. Note that it is not possible to declare an operator with equal or higher precedence
than juxtaposition or equal or lower precedence than '->' and '<-'.

3.5 Name Preferences

During printing, Twelf frequently has to assign names to anonymous variables. In order to
improve readability, the user can declare a name preference for anonymous variables based on their
type. Thus name preferences are declared for type family constants. Note that name preferences
are not used to disambiguate the types of identifiers during parsing.

decl ::= ...
I '/.name id id.

Following our same conventions, a name preference declaration has the form '/.name a id, that
is, the first identifier must be a type family already declared and the second is the name preference
for variables of type a. The second identifier must be uppercase, that is, start with a letter from
'A' through 'Z' or an underscore '_'. Anonymous variables will then be named idl, id2, etc.

Chapter 3: Syntax 11

3.6 Sample Signature

Below is a signature for intuitionistic first-order logic over an unspecified domain of individuals
and atomic propositions. It illustrates constant declarations and definitions and the use of operator

precedence and name preference declarations. It may be found in the file 'examples/guide/nd. elf.

•/.•/.'/, Individuals
i : type.

'/.'/.'/, Propositions
o : type.

imp : o -> o -> o.
and : o -> o -> o.
true : o.
or : o -> o -> o.
false : o.
forall : (i -> o) -> o.
exists : (i -> o) -> o.

'/.name i T

'/name o A

'/.infix right 10 imp
'/.infix right 11 and

'/.infix right 11 or

not : o -> o = [A:o] A imp false.

'/.'/,'/. Natural Deductions

nd o -> type. '/.name nd D

(nd A -> nd B) -> nd (A imp B)
nd (A imp B) -> nd A -> nd B.
nd A -> nd B -> nd (A and B).
nd (A and B) -> nd A.
nd (A and B) -> nd B.
nd (true).

-> nd C) -> (nd B -> nd C) -> nd C.

impi
impe
andi
andel
ande2
trüei
'/, no truee
oril : nd A -> nd (A or B).
ori2 : nd B -> nd (A or B).
ore : nd (A or B) -> (nd A
'/, no falsei
falsee : nd false -> nd C.
foralli : ({x:i} nd (A x)) -> nd (forall A).
foralle : nd (forall A) -> {T:i} nd (A T).
existsi : {T:i} nd (A T) -> nd (exists A).
existse : nd (exists A) -> ({x:i} nd (A x) -> nd C)

noti : (nd A -> nd false) -> nd (not A)
= [D:nd A -> nd false] impi D.

note : nd (not A) -> nd A -> nd false
= [D:nd (not A)] [E:nd A] impe D E.

-> nd C.

12 Twelf User's Guide

Chapter 4: Term Reconstruction 13

4 Term Reconstruction

Representations of deductions in LF typically contain a lot of redundant information. In order
to make LF practical, Twelf gives the user the opportunity to omit redundant information in dec-
larations and reconstructs it from context. Unlike for functional languages, this requires recovering
objects as well as types, so we refer to this phase as term reconstruction.

There are criteria which guarantee that the term reconstruction problem is decidable, but unfor-
tunately these criteria are either very complicated or still force much redundant information to be

supplied. Therefore, the Twelf implementation employs a reconstruction algorithm which always
terminates and gives one of three answers:

1. yes, and here is the most general reconstruction;

2. no, and here is the problem; or

3. maybe.

The last characterizes the situations where there is insufficient information to guarantee a most
general solution to the term reconstruction problem. Because of the decidable nature of type-
checking in LF, the user can always annotate the term further until it falls into one of the definitive
categories.

4.1 Implicit Quantifiers

The model of term reconstruction employed by Twelf is straightforward, although it employs
a relatively complex algorithm. The basic principle is a duality between quantifiers omitted in a
constant declaration and implicit arguments where the constant is used. Recall some definitions in
the signature denning natural deductions (see Section 3.6 [Sample Signature], page 11).

o : type.
and : o -> o -> o. '/.infix right 10 and
nd : o -> type.
andi : nd A -> nd B -> nd (A and B) .

The last declaration contains A and B as free variables. Type reconstruction infers most general
types for the free variables in a constant declaration and adds implicit quantifiers. In the example
above, A and B must both be of type o. The internal form of the constant thus has one of the
following two forms.

14 Twelf User's Guide

andi : {A:o} {B:o> nd A -> nd B -> nd (A and B).
andi : {B:o} {A:o> nd A -> nd B -> nd (A and B).

These forms are printed during type reconstruction, so the user can examine if the result of
reconstruction matches his expectations.

4.2 Implicit Arguments

The quantifiers on A and B in the declaration

andi : nd A -> nd B -> nd (A and B).

were implicit. The corresponding arguments to andi are also implicit. In fact, since the order of
the reconstructed quantifiers is arbitrary, we cannot know in which order to supply the arguments,
so they must always be omitted. Thus a constant with n implicit quantifiers is supplied with n
implicit arguments whereever it is seen. These implicit arguments are existential variables whose
value may be determined from context by unification.

For example, using also

true : o.
truei: nd (true).

we have

(andi truei truei) : nd (true and true).

During parsing, the expression (andi truei truei) is interpreted as

(andi _ _ truei truei)

where the two underscores stand for the implicit A and B arguments to andi. They are replaced by
existential variables whose value will be determined during type reconstruction. We call them Al
and A2 and reason as follows.

I- andi : {A:o} {B:o} nd A -> nd B -> nd (A and B)
I- andi Al : {B:o> nd Al -> nd B -> nd (Al and B)
I- andi Al A2 : nd Al -> nd A2 -> nd (Al and A2)

Chapter 4: Term Reconstruction 15

At this point, we need a to infer the type of the application (andi Al A2) truei. This equates
the actual type of the argument with the expected type of the argument.

I- andi Al A2 : nd Al -> nd A2 -> nd (Al and A2)
|- truei : nd true

I- andi Al A2 truei : nd A2 -> nd (Al and A2)
where nd true = nd Al

The equation can be solved by instantiating Al to true and we continue:

|- andi true A2 truei : nd A2 -> nd (true and A2)
|- truei : nd true

|- andi true A2 truei truei : nd (true and A2)
where nd true = nd A2

|- andi true true truei truei : nd (true and true)

The last line is the expected result. In this way, term reconstruction can always be reduced to
solving equations such that every solution to the set of equations leads to a valid typing and vice
versa.

4.3 Strict Occurrences

Both for type reconstruction and the operational semantics, Twelf must solve equations between
objects and types. Unfortunately, it is undecidable if a set of equations in the LF type theory has
a solution. Worse yet, even if it has solutions, it may not have a most general solution. Therefore,
Twelf postpones difficult equations as constraints and solves only those within the pattern fragment
(see Miller 1991, Journal of Logic and Compilation and Pfenning 1991, Logical Frameworks). In
this fragment, principal solutions always exist and can be computed efficiently. If constraints remain
after term reconstruction, the constant declaration is rejected as ambiguous which indicates that
the user must supply more type information. We illustrate this phenomenon and a typical solution
in our natural deduction example.

A central concept useful for understanding the finer details of type reconstruction is the notion
of a strict occurrence of a free variable. We call a position in a term rigid if it is not in the argument
of a free variable. We then call an occurrence of a free variable strict if the occurrence is in a rigid
position and all its arguments (possibly none) are distinct bound variables.

16 Twelf User's Guide

If all free variable occurrences in all declarations in a signature are strict, then term recon-
struction will always either fail or succeed with a principal solution, provided no further terms are
omitted (that is, replaced by an underscore).

If a free variable in a declaration of a constant c has no strict occurrence at all, then its type
can almost never be inferred and most uses of c will lead to a constraint.

If a free variable has strict and non-strict occurrences then in most cases term reconstruction will
provide a definitive answer, but there is no guarantee. Mostly this is because most general answers
simply do not exist, but sometimes because the algorithm generates, but cannot solve constraints
with unique solutions.

We use some advanced examples from the natural deduction signature to illustrate these concepts
and ideas. In the declarations

foralli : ({x:i} nd (A x)) -> nd (forall A),
foralle : nd (forall A) -> {T:i} nd (A T).

all free variables have a strict occurrence. However, if we had decided to leave T as an implicit
argument,

foralle : nd (forall A) -> nd (A T).

then T has no strict occurrence. While this declaration is accepted as unambiguous (with A:i -> o
and T:i), any future use of foralle most likely leads to constraints on T which cannot be solved.

4.4 Strict Definitions

Definitions are currently restricted so that each argument to the defined constant, may it be
implicit or explicit, must have at least one strict occurrence in the right-hand side. For example,
the definition of not in the signature for natural deduction (see Section 3.6 [Sample Signature],
page 11)

not : o -> o = [A:o] A imp false.

is strict since the only argument A has a strict occurrence in A imp false. On the other hand, the
definition

Chapter 4: Term Reconstruction 17

noti : ({p:o} nd A -> nd p) -> nd (not A)
= [D] impi ([u:nd A] D false u).

which gives a possible derived introduction rule for negation is not strict: the argument D has only
one occurrence, and this occurrence is not strict since the argument false is not a variable bound
in the body, but a constant.

However, the definitions

noti : (nd A -> nd false) -> nd (not A)
= [D:nd A -> nd false] impi D.

note : nd (not A) -> nd A -> nd false
= [D:nd (not A)] [E:nd A] impe D E.

are both strict since arguments D and E both have strict occurrences. Type-checking these definitions
requires that the definition of not A is expanded to A imp false.

Note that free variables in the type and the right-hand side of a definition are shared. In the
above example, A occurs both in the types and the right hand side and it should be thought of as
the same A. With the implicit quantifiers and abstractions restored, the definitions above have the
following form.

noti : {A:o} (nd A -> nd false) -> nd (not A)
= [A:o] [D:nd A -> nd false] impi D.

note : {A:o} nd (not A) -> nd A -> nd false
= [A:o] [D:nd (not A)] [E:nd A] impe D E.

4.5 Type Ascription

In some circumstances it is useful to directly ascribe a type in order to disambiguate declarations.
For example, the term oril truei has principal type nd (true or B) for a free variable B. If we
want to constrain this to a derivation of nd (true or false) we can write orii truei : nd (true
or false).

Explicit type ascription sometimes helps when the source of a type error is particularly hard
to discern: we can ascribe an expected type to a subterm, thus verifying our intuition about
constituent terms in a declaration.

18 Twelf User's Guide

4.6 Error Messages

When term reconstruction fails, Twelf issues an error message with the location of the declaration
in which the problem occurred and the disagreement encountered. A typical message is

examples/nd/nd.elf:37.35-37.41 Error: Type mismatch
Expected: o
Found: (i -> o) -> o
Expression clash

which points to an error in the file 'examples/nd/nd.elf, line 37, characters 35 through 41 where

an argument to a function was expected to have type o, but was found to have type (i -> o) -> o.

If constraints remain, the error location is the whole declaration with the message

filename:location Error: Typing ambiguous — unresolved constraints

The filename and location information can be used by Emacs (see Chapter 11 [Emacs Interface],
page 55) to jump to the specified location in the given file for editing of the incorrect declaration
for the constant c. The location has the form linel. column l-Hne2.column2 and represent Twelf's
best guess as to the source of the error. Due to the propagation of non-trivial constraints the source
of a type reconstruction failure can sometimes not be pinpointed very precisely.

Chapter 5: Logic Programming 19

5 Logic Programming

Twelf gives an operational interpretation to signatures under the computation-as-proof-search
paradigm. The fundamental idea is to fix a simple search strategy and then search for a derivation
of a query according to this strategy. The result may be a substitution for the free variables in
a query and a derivation, or explicit failure. It is also possible that the computation does not
terminate.

A query can be posed in three different ways: as a '/.query declaration, as a '/.solve declaration,
or interactively, using a top-level invoked from ML with Twelf .top which prompts with '?-' (see
Section 5.3 [Interactive Queries], page 20).

query ::= id : term '/, X : A, X a free variable
I term '/, A

bound : : = nat '/, number of solutions
I * '/, unbounded number

qdecl : := bound bound query '/, expected solutions, try limit, query

decl ::= ...
I '/.query qdecl. '/, execute query
I '/.solve id : term. '/, solve and name proof term

In all of these cases, the free variables in a query are interpreted existentially, which is in contrast
to constant declarations where free variables are interpreted universally. In particular, free variables
might be instantiated during type reconstruction and during execution of the query.

5.1 Query Declaration

The query form

'/.query expected try A.

will try to solve the query A and verify that it gives the expected number of solutions, but it will
never try to find more than indicated by try. It succeeds and prints a message, whose precise form
depends on the value of Twelf .chatter if A has the expected number of solutions; otherwise it
either fails with an error message or does not terminate, "/.query' has no other effect on the state
of Twelf. Here are some examples.

20 Twelf User's Guide

'/.query 1 * A. '/, check that A has exactly one solution
'/query 1 1 A. '/, check that A has at least one solution
'/.query * 3 A. '/, A has infinitely many solutions, check 3
'/.query * * A. '/, fails if A has finitely many solutions
'/.query 1 0 A. '/, skip this query

5.2 Solve Declaration

The query form

'/solve c : A.

will search for the first solution M of A and then define

c : A = M.

If there are any free variables remaining in M or A after search, they will be implicitly quantified
in the new definition. This form of definition is particularly useful to compute and name inputs to
future queries. An example of this feature from the file 'examples/nd/lam.elf can be found in
Section 8.5 [Proof Realizations], page 42.

5.3 Interactive Queries

An interactive top-level can be invoked using the SML expression Twelf .top () ;. The top-level
prompts with '?- ' and awaits the input of a query, terminated by a period '.' and a RET.

After the query has been parsed, Twelf reconstructs implicit type information, issuing a warning
if constraints remain. The result is executed as a query. At any point during the processing of a
query the user may interrupt with C-c (that is, CTRL and c) to drop back into ML's interactive
top-level.

When Twelf has found a solution, it prints the answer substitution for all free variables in the
query, including the proof term variable if one was given. It also notes if there are remaining
equational constraints, but currently does not print them.

The top-level then waits for input, which is interpreted as follows

Chapter 5: Logic Programming 21

y, Y, or ; backtrack and search for another solution

q or Q quit Twelf s top-level and return to ML

n, N, or anything else
return to prompt for another query

5.4 Sample Trace

As an example we consider lists of propositions and some simple operations on them, as they
might be used when programming a theorem prover.

list
nil
cons

type,
list.
o -> list -> list.

First, we want to write a program to append two lists to obtain their concatenation. This is
expressed as a relation between the three lists, which in turn is implemented as a type family

append : list -> list -> list -> type.

appNil : append nil K K.
appCons : append (cons X L) K (cons X M)

<- append L K M.

Here, we use the synonym A <- B for B -> A to improve readability. We say A if B.

The first sample query concatenates the singleton lists containing true and false. We proceed
as if we had loaded the appropriate files and started a top-level with Twelf .top () ;.

?- append (cons true nil) (cons false nil) L.

Here, L is a free existential variable. We search for an object M : append (cons true nil) (cons
false nil) L, even though this object will not be shown in this form or query. Each constant
declaration in the signature is tried in turn, unifying the head with the goal above. In this manner,
we obtain the following sequence of goals and actions. Note that the intermediate forms and
comments are not printed when this is run. They are added here to illustrate the behavior.

22 Twelf User's Guide

'/, original goal after parsing and type reconstruction
?- append (cons true nil) (cons false nil) L.
[try appNil:

append nil Kl Kl
= append (cons true nil) (cons false nil) L

unification fails with constant clash: nil <> cons
]
[try appCons:

append (cons XI LI) K2 (cons XI Ml)
= append (cons true nil) (cons false nil) L

unification succeeds with
XI = true, LI = nil, K2 = cons false nil, L = cons true Ml

]
'/, subgoal
?- append nil (cons false nil) Ml.
[try appNil:

append nil K3 K3
= append nil (cons false nil) Ml

unification and subgoal succeeds with
K3 = cons false nil, Ml = cons false nil

]

At this point the overall goal succeeds and we read off the answer substitution for the only
free variable in the query, namely L. It was first determined to be cons true Ml and then Ml was
instantiated to cons false nil, leading to the instantiation

L = cons true (cons false nil).

If instead we pose the query

?- X : append (cons true nil) (cons false nil) L.

we also obtain the proof term

L = cons true (cons false nil);
X = appCons appNil.

As another example we consider a query with several solutions which are enumerated when
we ask for further results. This time we do not trace the steps of the execution, but show the
interaction verbatim.

Chapter 5: Logic Programming 23

?- append L K (cons true (cons false nil)).
Solving...
K = cons true (cons false nil);
L = nil.
More? y
K = cons false nil;
L = cons true nil.
More? y
K = nil;
L = cons true (cons false nil).
More? y
Mo more solutions

5.5 Operational Semantics

The operational semantics of Twelf is a form of typed constraint logic programming. We will use
standard terminology from this area. A type family which is used in a program or goal is called a
predicate. A constant declaration in a signature which is available during search is called a clause.
A clause typically has the form c : a Ml ... Mm <- Al <-...<- An, where a Ml ... Mm is the head
of the clause and Al through An are the subgoals. A clause is used to reduce a goal to subgoals by
a process called backchaining. Backchaining unifies the head of the clause with the current goal to
generate subgoals. Next, we select one of the subgoals as a current goal and continue the search
process. Actually, instead of unification (which is undecidable in LF), Twelf employs constraint
simplification and carries along equational constraints in a normal form.

A hypothesis which is introduced during search is a local assumption; a parameter is a local
parameter. Parameters act like constants in unification, except that their occurrences might be
restricted due to parameter dependency.

Without going into a formal description, here are the central ideas of the operational semantics.

Clause selection.

The clauses are tried in the following order: from most recent to least recent local
assumption, then from first to last clause in the global signature.

Subgoal selection.

Subgoals are solved from the inside out. For example, when a clause c : A <- B <- C.
is applied to solve the goal ?- A. then the first subgoal is B and the second subgoal C.
Truly dependent variables will only be subject to unification and never give rise to a
subgoal. For example c : {X:b} a X <- a c is a clause with head a X, subgoal a c, and
existential variable X.

24 Twelf User's Guide

Unification.
An atomic goal is unified with the clause head using higher-order pattern unification.
All equations outside this fragment are postponed and carried along as constraints.

Local assumptions.
A goal of the form ?- A -> B. introduces a local assumption A and then solves B un-
der this assumption. To solve atomic goals, local assumptions are tried before global
clauses, using the most recently made assumption first. Note that this is different from
Prolog assert in that A is available only for solving B.

Local parameters.
Parameters are introduced into proof search by goals of the form ?- {x:A} B. which
generates a new parameter a and then solves the result of substituting a for x in B.
Parameters are also called universal variables since they are not subject to instantiation
during unification. Local parameters will never be used as local assumptions during
search.

5.6 Sample Program

As an example, we consider simple type inference for the pure lambda-calculus. An extension of
this example to Mini-ML is given in the course notes Pfenning 1992. Computation and Deduction.
The code below can be found in the file 'examples/guide/lam.elf.

Chapter 5: Logic Programming 25

'/, Simple types
tp : type.

arrow : tp -> tp -> tp.

'/, Expressions
exp : type.

lam : (exp -> exp) -> exp.
app : exp -> exp -> exp.

'/, Type inference
7, |- E : T (expression E has type T)

of : exp -> tp -> type.

tp_lam : of (lam E) (arrow Tl T2)
<- ({x:exp>

of x Tl -> of (E x) T2)

tp.app : of (app El E2) Tl
<- of El (arrow T2 Tl)
<- of E2 T2.

'/.name tp T.

'/. Tl => T2

'/name exp E.

'/, lam x. E
*/. (El E2)

'/.name of P.

'/. I- lam x. E : Tl => T2
'/. if x:Tl |- E : T2.

'/. I- El E2 : Tl
'/. if I- El : T2 => Tl
'/. and |- E2 : T2.

Again, we have used the notation A <- B to emphasize the interpretation of constant declarations

as clauses. We now trace the query which infers the most general type of the identity function,

represented as lam [x:exp] x. We indicate the scope of hypotheses which are introduced during

search by indentation.

'/, original query, T free
?- of (lam [x:exp] x) T.
'/, use tp_lam with E = ([x:exp] x) and T = arrow Tl T2
'/, subgoal
?- {x:exp} of x Tl -> of x T2.
'/, introduce parameter e
?- of e Tl -> of e T2.
'/, introduce hypothesis labelled p
p:of e Tl
?- of e T2.
'/, succeed by hypothesis p with Tl = T2

At this point the query succeeds and prints the answer substitution.

T = arrow Tl Tl.
More? y
No more solutions

26 Twelf User's Guide

We requested more solution by typing y, but there are no further possibilities. The free variable
Tl in the answer substitution means that every instance of arrow Tl Tl provides a solution to the
original query. In other words, lam [x:exp] x has type arrow Tl Tl for all types Tl.

As a second example we verify that self-application is not well-typed in the simply-typed lambda-
calculus.

?- of (lam [x:exp] app x x) T.
'/. use tp_lam with T = arrow Tl T2
'/, subgoal
?- {x:exp} of x Tl -> of (app x x) T2.
'/, introduce parameter e
?- of e Tl -> of (app e e) T2.
'/, introduce hypothesis p: of a Tl
p:of e Tl

?- of (app e e) T2.
*/, use tp_app
'/, first subgoal
?- of e (arrow T3 T2).
'/, succeed by hypothesis p with Tl = arrow T3 T2
'/, second subgoal
?- of e T3.
'/, fail, since T3 = arrow T3 T2 has no solution

At the point where the second subgoals fails we backtrack. However, all other alternatives fail
immediately, since the clause head does not unify with the goal and the overall query fails.

Chapter 6: Modes 27

6 Modes

In most cases, the correctness of the algorithmic interpretation of a signature as a logic program
depends on a restriction to queries of a certain form. Often, this is a restriction of some arguments
to inputs which must be given as ground objects, that is, objects not containing any existential
variables. In return, one often obtains outputs which will also be ground. In the logic programming
terminology, the information about which arguments to a predicate should be considered input and
output is called mode information.

Twelf supports a simple system of modes. It checks explicit mode declarations by the pro-
grammer against the signature and signals errors if the prescribed information flow is violated.
Currently, queries are not checked against the mode declaration.

Mode checking is useful to uncover certain types of errors which elude the type-checker. It
can also be used to generate more efficient code, although the compiler currently does not take
advantage of mode information.

There are two forms of mode declarations: a short form which is adequate and appropriate most
of the time, and a long form which is sometimes necessary to ascribe the right modes to implicit
arguments

mdecl ::= smdecl '/, short mode declaration
I fmdecl */, full mode declaration

decl
'/mode mdecl.

6.1 Short Mode Declaration

There are two forms of mode declarations: a short and a full form. The short form is an
abbreviation which is expanded into the full form when it is unambiguous.

28 Twelf User's Guide

mode : := + '/, input
1 * '/, unrestricted
1 - '/, output

mid ::= mode id '/, named mode identifier, one token

smdecl ::= id '/, type family a
I smdecl mid */, argument mode

Mode declarations for a predicate a must come before any clauses defining a. Note that the
mode followed with the identifier must be one token, such as '+L' and not '+ L'. The short form is

most convenient in typical situations. For example, we can declare that the append program (see

Section 5.4 [Sample Trace], page 21) takes the first two arguments as input and produces the the
third as output.

append : list -> list -> list -> type,
'/mode append +L +K -M.

If we wanted to use append to split a list into two sublists, we would instead declare

append : list -> list -> list -> type,
'/.mode append -L -K +M.

where the clauses appNil and appCons remain unchanged.

In the lambda-calculus type checker (see Section 5.6 [Sample Program], page 24), the type must
be an unrestricted argument.

of : exp -> tp -> type.
'/.mode of +E *T.

If we declare it as an input argument, '/mode of +E +T, we obtain an error pointing to the first
occurrence of T2 in the clause tp_app reproduced below.

examples/nd/lam.elf:27.20-27.22 Error:
Occurrence of variable T2 in input (+) argument not necessarily ground

tp.app : of (app El E2) Tl
<- of El (arrow T2 Tl)
<- of E2 T2.

Chapter 6: Modes 29

If we declare it as an output argument, '/mode of +E -T, we obtain an error pointing to the
second occurrence of Tl in the clause tp_lam reproduced below.

examples/nd/lam.elf:25.8-25.10 Error:
Occurrence of variable Tl in output (-) argument not necessarily ground

tp_lam : of (lam E) (arrow Tl T2)
<- ({x:exp}

of x Tl -> of (E x) T2).

In general, for a mode declaration in short form the arguments are specified exactly as they
would look in the program. This means one cannot specify the modes of implicit arguments which
are filled in by term reconstruction. These modes are reconstructed as follows: each implicit
argument which appears in the type of an input argument is considered input '+', those among the
remaining which appear in an output argument are considered output '-', the rest are unrestricted.
The mode declaration is echoed in full form, so the user can verify the correctness of the modes
assigned to implicit arguments. If the inferred full mode declaration is incorrect, or if one wants
to be explicit about modes, one should use full mode declarations (see Section 6.2 [Full Mode
Declaration], page 29).

6.2 Full Mode Declaration

To specify modes for implicit arguments one must use the full form of mode declaration. A mode
can be one of '+', '*', or '-' (see Section 6.1 [Short Mode Declaration], page 27).

fmdecl ::= mode {id : term} fmdecl
I mode {id} fmdecl
I term

The term following the mode prefix in a full mode declaration must always have the form a xl
... xn where xl through xn are variables declared in the mode prefix. As an example, we give an
alternative specification of the append predicate.

append : list -> list -> list -> type.
'/.mode +{L:list} +{K:list} -{M:list} append L K M.

30 Twelf User's Guide

6.3 Mode Checking

Mode checking for input, output, and unrestricted arguments examines each clause as it is
encountered. The algorithm performs a kind of abstract interpretation of the clause, keeping track
of a list of the existential variables for which it knows that they will be ground.

1. We assume each existential variable with a strict occurrence (see Section 4.3 [Strict Occur-
rences], page 15) in an input argument to the clause head to be ground.

2. We traverse the subgoals in evaluation order (see Section 5.5 [Operational Semantics], page 23).
For each subgoal we first verify that all input arguments will be ground, using the information
about the existential variables collected so far. If this check succeeds we add all variables

which have a strict occurrence in an output argument of the subgoal to the list of variables
with known ground instantiations.

3. After the last subgoal has been examined, we verify that the output arguments in the clause
head are now also ground.

Arguments whose mode is unrestricted are ignored: they do no need to be checked, and they
do not contribute any information about the instantiations of existential variables.

Chapter 7: Termination 31

7 Termination

Besides checking types and modes, Twelf can also verify if a given type family, when interpreted
as a logic program, always terminates on well-moded goals. In many cases this means that the
program implements a decision procedure. Of course, in general termination is undecidable, so we
only check a simple sufficient condition.

Checking termination presupposes that the program is well-typed and guarantees termination
only when the arguments involved in the termination order are ground. This will always be true
for well-moded goals, since mode and termination declarations must be consistent.

Termination is different from checking types and modes in that it is not checked incrementally as
the signature is read. Instead, termination of a predicate is a global property of the program once
it has been read. Thus termination declarations came after the predicate has been fully defined;
further extensions of the predicate are not checked and may invalidate termination.

The termination checker is rather rudimentary in that it only allows lexicographic and simul-
taneous extensions of the subterm ordering. Moreover, it does not take into account if a result
returned by a predicate is smaller than an input argument. Nonetheless, for the style of programs
written in Twelf, the termination of many decision procedures can be verified.

7.1 Termination Declaration

The termination orders we construct are lexicographic or simultaneous extensions of the sub-
term ordering explained in Section 7.2 [Subterm Ordering], page 33. The termination declaration
associates the termination order with argument positions of predicates via call patterns.

The case of mutually recursive predicates is particularly complex and requires mutual call pat-
terns and mutual arguments. Their syntax is given below; they are explained in Section 7.5 [Mutual
Recursion], page 36.

32 Twelf User's Guide

args ::=
I id args '/, named argument
I _ args '/, anonymous argument

callpat : := id args '/, ml ... xn

callpats ::=
I (callpat) callpats

'/, mutual call patterns

ids ::=
I id ids '/, argument name

marg : := id '/, single argument
I (ids) '/, mutual arguments

orders ::=
I order orders '/, component order

order : : = marg '/, subterm order
I { orders } '/. lexicographic order
I [orders] '/, simultaneous order

tdecl ::= order callpats */, termination declaration

decl ::= ...
I '/.terminates tdecl. '/, termination declaration

All identifiers in the order specification of a termination declaration must be upper case, must
occur in the call patterns, and no variable may be repeated. Furthermore, all arguments partici-
pating in the termination order must occur in the call patterns in input positions.

The most frequent form of termination declaration is

'/terminates Xi (a XI ... Xn)

which expresses that predicate a terminates because recursive calls decrease the input argument Xi
according to the subterm ordering (see Section 7.2 [Subterm Ordering], page 33).

As an example, we consider a proof that simple type inference (see Section 5.6 [Sample Program],
page 24) terminates. Recall the relevant program fragment (see 'examples/guide/lam.elf).

Chapter 7: Termination 33

of : exp -> tp -> type. '/.name of P.
'/.mode of +E *T.

tp.lam : of (lam E) (arrow Tl T2) '/. |- lam x. E : Tl => T2
<- ({x:exp} % if x:Tl |- E : T2.

of x Tl -> of (E x) T2).

tp_app : of (app El E2) Tl '/. |- El E2 : Tl
<- of El (arrow T2 Tl) '/. if |- El : T2 => Tl
<- of E2 T2. '/. and I - E2 : T2.

The typability of an expression is always reduced to the typability of its subexpressions. There-

fore any call to the of predicate with a ground expression should terminate. In general, termination

can only be checked for input arguments, and all calls must be well-moded (see Section 6.3 [Mode

Checking], page 30). Twelf verifies termination with the declaration

'/.terminates E (of E T) .

Here, E specifies the decreasing argument, namely the first argument of the typing judgment as

expressed in the call pattern (of E T).

A corresponding attempt to show that evaluation always terminates,

'/.terminates E (eval E V) .

fails for the clause ev_app with the message

examples/guide/lam.elf:1053-1068 Error:
Termination violation:
(El' V2) < (app El E2)

indicating that in a recursive call the term El' V2 could not be shown to be smaller than app El

E2. In our example, of course, evaluation need not terminate for precisely this reason.

7.2 Subterm Ordering

On first-order terms, that is, terms not containing lambda-abstraction, the subterm ordering is

familiar: M<N if M is a strict subterm of N, that is, M is a subterm N and M is different from
N.

34 Twelf User's Guide

On higher-order terms, the relation is slightly more complicated because we must allow the
substitution of parameters for bound variables without destroying the subterm relation. Consider,
for example, the case of the typing rule

of : exp -> tp -> type. '/.name of P.
'/.mode of +E *T.

tp_lam : of (lam E) (arrow Tl T2) */. |- lam x. E : Tl => T2
<- ({x:exp} */. if x:Tl |- E : T2.

of x Tl -> of (E x) T2).

from the signature for type inference (see Section 5.6 [Sample Program], page 24) in the file
'example/guide/lam.elf. We must recognize that

(E x) < (lam E)

according to the subterm ordering. This is because E stands for a term [y:exp] E' and so E x has
the same structure as E' except that y (a bound variable) has been replaced by x (a parameter).
This kind of pattern arises frequently in Twelf programs.

On the other hand, the restriction to parameter arguments of functions is critical. For example,
the lax rule

tp_applam : of (app (lam El) E2) T2
<- of (El E2) T2.

which applies El to E2 which is not a parameter, is indeed not terminating. This can be seen from
the query

?- of (app (lam [x:exp] app x x) (lam [y:exp] app y y)) T.

The restriction of the arguments to parameters can be lifted when the type of the argument
is not mutually recursive with the result type of the function. For example, the signature for
natural deduction (see Section 3.6 [Sample Signature], page 11, contains no constructor which
allows propositions to occur inside individual terms. Therefore

(A T) < (forall A)

Chapter 7: Termination 35

where A : i -> o and T : i is an arbitrary term (not just a parameter). Intuitively, this is correct
because the number of quantifiers and logical connectives is smaller on the left, since T cannot
contain such quantifiers or connectives.

This kind of precise analysis is important, for example, in the proof of cut elimination or the
termination of polymorphic type reconstruction.

7.3 Lexicographic Orders

Lexicographic orders are specified as

iOl ... On}

Using vi and wi for corresponding argument structures whose order is already defined, we
compare them lexicographically as follows:

{vl ... vn} < {wl ... wn}, if

vl<wl, or

vl = wl and v2<w2, or

vl = wl, v2 = w2, ..., and vn<wn.

A lexicographic order is needed, for example, to show termination of Ackermann's function,
defined in 'examples/arith/arith.elf' with the termination declaration in
'examples/arith/arith. thm'.

7.4 Simultaneous Orders

Simultaneous orders require that one of its elements decreases while all others remain the same.
This is strictly weaker than a lexicographic ordering built from the same components. Technically
speaking it is therefore is redundant for termination checking, since the corresponding lexicographic
ordering could be used instead. However, for inductive theorem proving it is quite useful, since the
search space for simultaneous induction is much smaller than for lexicographic induction.

Simultaneous orders are specified as

36 Twelf User's Guide

101 ... On]

Using vi and wi for corresponding argument structures whose order is already defined, we
compare them simultaneously as follows:

[vl ... vn] < [wl ... urn], if

U1<K;1, V2< = w2, ..., and vn< = wn, or

vl< = wl, v2<w2, ..., and vn< = wn, or

vl< = wl, v2< = w2, ..., and vn<wn.

A combination of simultaneous and lexicographic order is used, for example, in the admissibility
of cut found in 'examples/cut-elim/int .thm', where either the cut formula A gets smaller, or if
A stays the same, either the derivation of the left or right premise get smaller while the other stays
the same.

7.5 Mutual Recursion

Mutually recursive predicates present a challenge to termination checking, since decreasing ar-
guments might appear in different positions. Moreover, mutually recursive predicates a and a'
might be prioritized so that when a calls a' all termination arguments remain the same, but when
a' calls a the arguments are smaller according to the termination order.

To handle the association of related argument in mutually recursive predicates, so-called mutual
arguments can be specified in a termination order. They are given as

(XI ... Xn)

The priority between predicates is indicated by the order of the call patterns. If we analyze call
patterns

(al argsl)
(a2 args2)

(an argsn)

then ai may call aj for i<j with equal termination arguments, but calls of ai from aj must decrease
the termination order.

Chapter 7: Termination 07

Mutual arguments are used, for example, in the proofs of soundness (file
'examples/lp-horn/uni-sound.thm') and completeness (file
'examples/lp-horn/uni-complete.thm') of uniform derivations for Horn logic.

38 Twelf User's Guide

Chapter 8: Theorem Prover 39

8 Theorem Prover

Disclaimer: The theorem proving component of Twelf is in an even more experimental stage and
currently under active development. There are two main restrictions which limit its utility: (1) it
only support reasoning about closed objects, and (2) it cannot apply lemmas automatically.

Nonetheless, it can prove a number of interesting examples automatically which illustrate our
approach the meta-theorem proving which is described in Schuermann and Pfenning 1998, CADE.
These examples include type preservation for Mini-ML, one direction of compiler correctness for
different abstract machines, soundness and completeness for logic programming interpreters, and
the deduction theorem for Hubert's formulation of propositional logic. These and other examples
can be found in the example directories of the Twelf distribution (see Chapter 13 [Examples],
page 67).

A theorem in Twelf is, properly speaking, a meta-theorem: it expresses a property of objects
constructed over a fixed LF signature. Theorems are stated in the meta-logic M2 whose quantifiers
range over LF objects. In the simplest case, we may just be asserting the existence of an LF
object of a given type. This only requires direct search for a proof term, using methods inspired by
logic programming. More generally, we may claim and prove forall/exists statements which allow
us to express meta-theorems which require structural induction, such as type preservation under
evaluation in a simple functional language (see Section 5.6 [Sample Program], page 24).

8.1 Theorem Declaration

There are two forms of declarations related to the proving of theorems and meta-theorems. The
first, '/.theorem, states a theorem as a meta-formula (mf orm) in the meta-logic M2 defined below.
The second, '/.prove, gives a resource bound, a theorem, and an induction ordering and asks Twelf
to search for a proof.

Note that a well-typed '/.theorem declaration always succeeds, while the '/.prove declaration only
succeeds if Twelf can find a proof.

40 Twelf User's Guide

dec ::= {id:term> */, x : A
I {id} 7. x

decs ::= dec
I dec decs

mform : := forall* decs mform '/, implicit universal
I forall decs mform '/, universal
I exists decs mform '/ existential
I true '/, truth

thdecl : := id : mform '/, theorem name a, spec

pdecl ::= nat order callpats '/, bound, induction order, theorems

decl ::= ...
I '/.theorem thdecl. '/, theorem declaration
I '/prove pdecl. '/, prove declaration

The prover only accepts quantifier alternations of the form forall* decs forall decs exists
decs true. Note that the implicit quantifiers (which will be suppressed when printing the proof
terms) must all be collected in front.

The syntax and meaning of order and callpats are explained in Chapter 7 [Termination],
page 31, since they are also critical notions in the simpler termination checker.

8.2 Sample Theorems

As a first example, we use the theorem prover to establish a simple theorem in first-order logic
(namely that A implies A for any proposition ,4), using the signature for natural deduction (see
Section 3.6 [Sample Signature], page 11).

'/theorem
trivl : exists {D:{A:o} nd (A imp A)}

true.

'/prove 2 {} (trivl D) .

The empty termination ordering {} instructs Twelf not to use induction to prove the theorem.
The declarations above succeed, and with the default setting of 3 for Twelf .chatter we see

Chapter 8: Theorem Prover 41

'/.theorem trivl : ({A:o} nd (A imp A)) -> type.
'/.prove 2 {} (trivl D) .
'/.mode -{D:{A:o} nd (A imp A)} trivl D.
I

/trivl/: trivl ([A:o] impi ([Dl:ndA] Dl)).
y,

The line starting with '/.theorem shows the way the theorem will be realized as a logic program
predicate, the line starting with /trivl/ gives the implementation, which, in this case, consists of
just one line.

The second example is the type preservation theorem for evaluation in the lambda-calculus.
This is a continuation of the example in Section Section 5.6 [Sample Program], page 24 in the file
•examples/guide/lam.elf. Type preservation states that if and expression E has type T and E
evaluates to V, the V also has type T. This is expressed as the following '/.theorem declaration.

'/.theorem
tps : forall* {E:exp} {V:exp} {T:tp}

forall {D:eval E V} {Prof E T}
exists {Q:of V T}
true.

The proof proceeds by structural induction on D, the evaluation from E to V. Therefore we can
search for the proof with the following declaration (where the size bound of 5 on proof term size is
somewhat arbitrary).

'/.prove 5 D (tps D P Q).

Twelf finds and displays the proof easily. The resulting program is installed in the global
signature and can then be used to apply type preservation (see Section 8.5 [Proof Realizations],
page 42).

8.3 Proof Steps

We expect the proof search component of Twelf to undergo major changes in the near future,
so we only briefly review the current state.

Proving proceeds using three main kinds of steps:

42 Twelf User's Guide

Filling Using iterative deepening, Twelf searches directly for objects to fill the existential quan-
tifiers, given all the constants in the signature and the universally quantified variables
in the theorem. The number of constructors in the answer substitution for each existen-
tial quantifier is bounded by the size which is given as part of the '/.prove declaration,
thus guaranteeing termination (in principle).

Recursion Based on the termination ordering, Twelf appeals to the induction hypothesis on
smaller arguments. If there are several ways to use the induction hypothesis, Twelf
non-deterministically picks one which has not yet been used. Since there may be
infinitely many different ways to apply the induction hypothesis, the parameter
Twelf .Prover.maxRecurse bounds the number of recursion steps in each case of
the proof.

Splitting Based on the types of the universally quantified variables, Twelf distinguishes all pos-
sible cases by considering all constructors in the signatures. It nevers splits a variable
which appears as an index in an input argument, and if there are several possibilities
it picks the one with fewest resulting cases. Splitting can go on indefinitely, so the
paramater Twelf .Prover.maxSplit bounds the number of times a variable may be

split.

8.4 Search Strategies

The basic proof steps of filling, recursion, and splitting are sequentialized in a simple strategy
which never backtracks. First we attempt to fill all existential variables simultaneously. If that fails
we recurse by trying to find new ways to appeal to the induction hypothesis. If this is not possible,
we pick a variable to distinguish cases and then prove each subgoal in turn. If none of the steps
are possible we fail.

This behavior can be changed with the parameter Twelf .Prover.strategy which defaults to
Twelf .Prover.FRS (which means Filling-Recursion-Splitting). When set to Twelf .Prover .RFS
Twelf will first try recursion, then filling, followed by splitting. This is often faster, but fails in
some cases where the default strategy succeeds.

8.5 Proof Realizations

Proofs of meta-theorems are realized as logic programs. Such a logic program is a relational
representation of the constructive proof and can be executed to generate witness terms for the

Chapter 8: Theorem Prover 43

existentials from given instances of the universal quantifiers. As an example, we consider once
more type preservation (see Section 8.2 [Sample Theorems], page 40).

After the declarations,

'/.theorem
tps : forall* {E:exp} {V:exp} {T:tp}

forall -CD:eval E V} {P:of E T}
exists {Q:of V T}
true.

'/prove 5 D (tps D P Q) .

Twelf answers

/tps/tp_lam/ev_lam/:
tps ev.lam (tp_lam ([x:exp] [P2:of x Tl] PI x P2))

(tp.lam ([x:exp] [P3:of x Tl] PI x P3)).

/tps/tp_app/ev_app/tp_lam/:
tps (ev.app Dl D2 D3) (tp_app PI P2) P6

<- tps D3 P2 (tp.lam ([x:exp] [P4:of x T2] P3 x P4))
<- tps D2 PI P5
<- tps Dl (P3 E5 P5) P6.

which is the proof of type preservation expressed as a logic program with two clauses: one for
evaluation of a lambda-abstraction, and one for application. Using the '/.solve declaration (see
Section 5.2 [Solve Declaration], page 20) we can, for example, evaluate and type-check the identity
applied to itself and then use type preservation to obtain a typing derivation for the resulting value.

eO = (app (lam [x] x) (lam [y] y)).
'/.solve pO : of eO T.
'/.solve dO : eval eO V.
'/.solve tpsO : tps dO pO Q.

Recall that '/.solve c : V executes the query V and defines the constant c to abbreviate the
resulting proof term.

44 Twelf User's Guide

Chapter 9: ML Interface 45

9 ML Interface

The Twelf implementation defines a number of ML functions embedded in structures which can
be called to load files, execute queries, and set environment parameters such as the verbosity level
of the interaction. These functions and parameters are available in the Twelf structure. If you
open the Twelf structure with

open Twelf

after compiling and loading Twelf, you do not have to type the 'Twelf.' to the functions shown
below.

Previous implementations of Elf offered a stand-alone command interpreter but this has not yet
been ported. To exit Twelf and ML call Twelf .OS.exit ();.

9.1 Configurations

Groups of Twelf files are managed in configurations. A configuration is defined by a file, by
convention called 'sources, cfg', which resides in the same directory as the Twelf source files. The
configuration file must contain at most one Twelf source file per line, and the files must be listed in
dependency order. A configuration config can then be defined from the file by the ML declaration

val config = Twelf.Config.read "sources.cfg";

By convention, the filenames end in the extensions

'.elf for constant declarations and definitions or mixed files,

'. quy' for files which contain query declarations,

'.thm' for files which contain '/.theorem and '/.proof declarations.

File names may not contain whitespace. They are interpreted relative to the current working
directory of ML, but resolved into absolute path names when the configuration file is read. To
change the current working directory call

Twelf.OS.getDir (); (* get working directory *)
Twelf .OS. chDir "directory"; (* change working directory *)

46 Twelf User's Guide

As an example, we show how the Mini-ML configuration is defined and loaded, assuming your

current working directory is the root directory of Twelf.

val mini_ml = Twelf.Config.read "examples/mini-ml/sources.cfg";
Twelf.Config.load mini_ml;

Note that the identifier bound to the configuration (mini_ml in this example), must be a legal
ML identifier, usually consisting only of alphanumeric characters and underscores. The call to

Twelf .Conf ig. load returns either Twelf .OK or Twelf .ABORT. It reads each file in turn, starting
from an empty signature, printing the results of type reconstruction and search based on the value

of the Twelf .chatter variable (see Section 9.3 [Environment Parameters], page 47). If another

configuration or file has previously been read, all the declarations will first be deleted so that
Twelf .Conf ig. load always starts from the same state.

Loading a configuration will stop at the first error encountered, issue an appropriate message
and return Twelf .ABORT. If there is an unexpected internal error (which indicates a bug in the
Twelf implementation), it raises an uncaught exception instead and returns to the ML top-level.

To explore the behavior of programs interactively, you may call the Twelf top-level with

Twelf.top ();

which is explained in Section 5.3 [Interactive Queries], page 20.

9.2 Loading Files

Twelf also allows direct management of the signature by loading individual files. This is generally
not recommended because successive declarations simply accumulate in the global signature which
may lead to unexpected behavior. The relevant function calls are

Twelf.reset ();
Twelf.loadFile "file";

where Twelf .reset () resets the current global signature to be empty and Twelf .readFile "file"
loads the given file whose name is interpreted relative to the current working directory.

Caution: Reading a file twice will not replace the declarations of the first pass by the second, but
simply add them to the current signature. If names are reused, old declarations will be shadowed,

Chapter 9: ML Interface 47

but they are still in the global signature and might be used in the search for a solution to a query

or in theorem proving, leading to unexpected behavior. When in doubt, use configurations (see
Section 9.1 [Configurations], page 45) or call Twelf .reset ().

9.3 Environment Parameters

Various flags and parameters can be used to modify the behavior of Twelf and the messages it
issues. They are given below with the assignment of the default value.

Twelf.chatter := 3;

Controls the detail of the information which is printed when signatures are read.

0 Nothing.

1 Just file names.

2 File names and number of query solutions.

3 Each declarations after type reconstruction.

4 Debug information.

5 More debug information.

Twelf.doubleCheck := false;

If true, each declaration is checked again for type correctness after type reconstruc-
tion. This is expensive and useful only for your peace of mind, since type checking is
significantly simpler than type reconstruction.

Twelf.Print.implicit := false;
If true, implicit arguments (normally elided) are printed. Sometimes this is useful to
track particularly baffling errors.

Twelf.Print.depth := NONE;
If SOME(d) then terms deeper than level d are printed as "/,*/,'.

Twelf.Print.length := NONE;
If SOME(l) then argument lists longer than 1 are truncated with '...'.

Twelf.Print.indent : = 3;

Controls the amount of indentation for printing nested terms.

Twelf.Print.width := 80;
The value used to decide when to break lines during printing of terms.

Twelf.Prover.strategy : = Twelf.Prover.FRS;

Determines the strategy, where F=Filling, R=Recursion, and S=Splitting. Can also be
Twelf.Prover.RFS.

48 Twelf User's Guide

Twelf.Prover.maxSplit := 2;

The maximal number of generations of a variable introduced by splitting. Setting is to
0 will prohibit proof by cases.

Twelf.Prover.maxRecurse := 10;

The maximal number of appeals to the induction hypothesis in any case during a proof.

9.4 Timing Statistics

Twelf has a few utilities to collect run-time statistics which are useful mainly for the developers.
They are collected in the structure Timers. Timing information is cumulative in an ML session.

Twelf.Timers.show ();
Show the value of timers and reset them to zero.

Twelf.Timers.reset ();
Simply reset all timers to zero.

Twelf.Timers.check ();

Display the value of timers, but do not reset them.

Caution: Normally, the various times are exclusive, except that the runtime includes the garbage
collection time which is shown separately. However, there is a problem the time for printing the
answer substitution to a query is charged both to Printing and Solving.

9.5 Twelf Signature

For reference, here is the ML signature TWELF of the Twelf structure which defines most functions
and flags relevant to loading and executing Twelf programs.

signature TWELF =
sig

structure Print :
sig

val implicit : bool ref (* false, print implicit args *)
val depth : int option ref (* NONE, limit print depth *)
val length : int option ref (* NONE, limit argument length *)
val indent : int ref (* 3, indentation of subterms *)
val width : int ref (* 80, line width *)

end

Chapter 9: ML Interface 49

structure Timers :
sig

val show : unit -> unit
val reset : unit -> unit
val check : unit -> unit

end

structure OS
sig

val chDir :
val getDir
val exit :

end

string -> unit
: unit -> string
unit -> unit

structure Prover :
sig

datatype Strategy = RFS | FRS
val strategy : Strategy ref
val maxSplit : int ref
val maxRecurse : int ref

end

val chatter : int ref
val doubleCheck : bool ref

datatype Status = OK I ABORT

val reset : unit -> unit
val loadFile : string -> Status
val readDecl : unit -> Status
val decl : string -> Status

val top : unit -> unit

(* show and reset timers *)
(* reset timers *)
(* display, but not no reset *)

(* change working directory *)
(* get working directory *)
(* exit Twelf and ML *)

(* F=Fill, R=Recurse, S=Split *)
(* FRS, strategy used for '/.prove *)
(* 2, bound on splitting *)
(* 10, bound on recursion *)

O 3, chatter level *)
(* false, check after reconstruction *)

(* return status *)

(* reset global signature *)
(* load file *)
(* read declaration interactively *)
(* print declaration of constant *)

(* top-level for interactive queries *)

structure Config :
sig
type config (* configuration *)
val read : string -> config (* read config file *)
val load : config -> Status (* reset and load configuration *)
val define : string list -> config (* explicitly define configuration *)

end

val version : string
end; (* signature TWELF *)

(* Twelf version *)

50 Twelf User's Guide

Chapter 10: Twelf Server 51

10 Twelf Server

The Twelf server is a stand-alone command interpreter which provides the functionality of the
Twelf structure in ML (see Chapter 9 [ML Interface], page 45), but allows no ML definitions. It is
significantly smaller than Standard ML and is the recommended way to interact with Twelf except
for developers. Its behavior regarding configurations is slightly different in that the server maintains
a current configuration, rather than allowing the binding of names to configurations. Configuration
are defined with the Conf ig.read command which takes a configuration filename as argument.

In Emacs, the Twelf server typically runs in a process buffer called *twelf-server*. The user
can select this buffer and directly type commands to the Twelf server. This style of interaction is
inherited from the comint package for Emacs, but typically one works through advanced commands
in Twelf mode (see Section 11.1 [Twelf Mode], page 55).

The Twelf server prompts with •/,•/. OK •/,'/, or •/,'/, ABORT '/,•/. depending on the success of failure
of the previous operation. It accepts commands and their arguments on one line, except that
additional Twelf declarations which may be required are read separately, following the command
line. Reading declarations can be forcibly terminated with the end-of-file token "/,.'.

10.1 Server Types

The server commands employ arguments of the following types.

file The name of a file, relative to the current working directory.

id A Twelf identifier

strategy Either FRS or RFS (see Section 8.4 [Search Strategies], page 42)

bool Either true or false

nat A natural number (starting at 0)

limit Either * (to indicate no limit) or a natural number

10.2 Server Commands

The Twelf server recognized the following commands.

52 Twelf User's Guide

set parameter value

Set parameter to vaiue, where parameter is on of the following (explained in Section 9.3
[Environment Parameters], page 47).

chatter nat

doubleCheck bool

Print.implicit bool

Print. depth limit

Print. length limit

Print.indent nat

Print.width nat

Prover.strategy strategy

Prover.maxSplit nat

Prover.maxRecurse nat

get parameter
Print the current value of parameter (see table above).

Timers.show
Print and reset timers.

Timers.reset

Reset timers.

Timers.check

Print, but do not reset timrs.

OS.chDir ßle
Change working directory to file.

OS.getDir
Print current working directory.

OS.exit Exit Twelf server.

quit Quit Twelf server (same as exit).

Config.read file
Read current configuration from file.

Config.load
Load current configuration

reset Reset global signature.

loadFile file
Load Twelf file file.

Chapter 10: Twelf Server 53

decl id Show constant declaration for id.

top Enter interactive query loop (see Section 5.3 [Interactive Queries], page 20)

54 Twelf User's Guide

Chapter 11: Emacs Interface 55

11 Emacs Interface

The Twelf mode for Emacs provides some functions and utilities for editing Twelf source and for
interacting with an inferior Twelf server process which can load configurations, files, and individual
declarations and track the source location of errors. It also provides an interface to the tags package
which allows simple editing of groups of files, constant name completion, and locating of constant
declarations within the files of a configuration.

Note that in order to use the Emacs interface you need to include the line

(load "directory/emacs/twelf-init.el")

in your '.emacs' file, where directory is the Twelf root directory.

11.1 Twelf Mode

The Twelf mode in Emacs provides support for editing and indentation, syntax highlighting
(including colors) (see Section 11.11 [Syntax Highlighting], page 62), and communication commands
for interacting with a Twelf server running as an inferior process to Emacs. It defines a menu which
is added to the menu bar, usually at the top of each Emacs frame.

Many commands apply to the current declaration, which is the declaration in which we find
the Emacs cursor (not the cursor of the window system). If the cursor is between declarations,
the declaration after point is considered current. From the point of view of Emacs, single declara-
tions never include consecutive blank lines, which provides some insulation against missing closing
delimiters.

Normally, Twelf mode is entered automatically when a Twelf source file is edited (see Sec-
tion 11.12 [Emacs Initialization], page 62), but it can also be switched on or off directly with M-x
twelf-mode.

M-x twelf-mode

Toggle Twelf mode, the major mode for editing Twelf code.

56 Twelf User's Guide

11.2 Editing Commands

The editing commands in Twelf mode partially analyse the structure of the text at the cursor
position as Twelf code and try to indent accordingly. This is not always perfect.

TAB
M-x twelf-indent-line

Indent current line as Twelf code. This recognizes comments, matching delimiters, and
standard infix operators.

DEL

M-x backward-delete-char-untabify

Delete character backward, changing tabs into spaces.

M-C-q
M-x twelf-indent-decl

Indent each line of the current declaration.

M-x twelf-indent-region

Indent each line of the region as Twelf code.

11.3 Type Checking Commands

The Twelf mode provides simple commands which cause the server to load or reload the current
configuration, the file edited in the current buffer, or just the declaration at point. Each of these
command can be preceded by a prefix argument (for example, C-u C-c C-c) which will select the
Twelf server buffer after completion of the command. The Twelf server buffer can also be forced
to be shown with the C-c C-u Emacs command.

C-c C-c
M-x twelf-save-check-config

Save its modified buffers and then check the current Twelf configuration. With prefix
argument also displays Twelf server buffer. If necessary, this will start up an Twelf
server process.

C-c C-s

M-x twelf-save-check-file

Save buffer and then check it by giving a command to the Twelf server. In Twelf Config
minor mode, it reconfigures the server. With prefix argument also displays Twelf server
buffer.

Chapter 11: Emacs Interface 57

C-c C-d

M-x twelf-check-declaration

Send the current declaration to the Twelf server process for checking. With prefix
argument also displays Twelf server buffer.

C-c c

M-x twelf-type-const

Display the type of the constant before point. Note that the type of the constant will
be 'absolute' rather than the type of the particular instance of the constant.

C-c C-u

M-x twelf-server-display

Display Twelf server buffer, moving to the end of output. With prefix argument also
selects the Twelf server buffer.

11.4 Error Tracking

Error messages by the Twelf server are flagged with the filename and an educated guess as to
the source of the error (see Section 4.6 [Error Messages], page 18). These can be interpreted by
Emacs to jump directly to the suspected site.

Sometimes, the server buffer and the the server itself believe to have different working directories.
In that case, error tracking may not be able to find the file, and an explicit call to OS.chDir or M-x
cd in the server buffer may be required.

C-c '

M-x twelf-next-error

Find the next error by parsing the Twelf server or Twelf-SML buffer. Move the error
message on the top line of the window; put the cursor at the beginning of the error
source. If the error message specifies a range, the mark is placed at the end.

C-c =

M-x twelf-goto-error

Go to the error reported on the current line or below. Also updates the error cursor to
the current line.

58 Twelf User's Guide

11.5 Server State

The server state consists of the current configuration and a number of parameters described in
Chapter 10 [Twelf Server], page 51. The current configuration is often set implicitly, with the C-c
C-c command in a configuration buffer, but it can also be set explicitly.

C-c <
M-x twelf-set

Sets the Twelf parameter PARM to VALUE. When called interactively, prompts for
parameter and value, supporting completion.

C-c >

M-x twelf-get
Prints the value of the Twelf parameter PARM. When called interactively, promts for
parameter, supporting completion.

C-c C-i
M-x twelf-server-interrupt

Interrupt the Twelf server process.

M-x twelf-server
Start an Twelf server process in a buffer named *twelf-server*. Any previously existing
process is deleted after confirmation. Optional argument PROGRAM defaults to the
value of the variable twelf-server-program. This locally re-binds 'twelf-server-timeout'
to 15 sees.

M-x twelf-server—configure

Initializes the Twelf server configuration from CONFIG-FILE. A configuration file is
• a list of relative file names in dependency order. Lines starting with % are treated as

comments. Starts a Twelf servers if necessary.

M-x twelf-reset

Reset the global signature of Twelf maintained by the server.

M-x twelf-server—quit

Kill the Twelf server process.

M-x twelf-server-restart

Restarts server and re-initializes configuration. This is primarily useful during debug-
ging of the Twelf server code or if the Twelf server is hopelessly wedged.

M-x twelf-server-send-command

Restarts server and re-initializes configuration. This is primarily useful during debug-
ging of the Twelf server code or if the Twelf server is hopelessly wedged.

Chapter 11: Emacs Interface 59

11.6 Info File

The content of this file in Info format can be visited directly and does not need to be tied into
the Info tree. See the documentation for the Emacs info package for more info

C-c C-h
M-x twelf-info

Visit the Twelf User's Guide in info format in Emacs. With a prefix argument it
prompts for the info file name, which defaults to the value of the twelf-info-f ile
variable.

11.7 Tags Files

Tags files provide a convenient way to group files, such as Twelf configurations. See the docu-
mentation for the Emacs etags package for more information.

M-x twelf-tag

Create tags file for current configuration. If the current configuration is sources.cfg, the
tags file is TAGS. If current configuration is named FILE.cfg, tags file will be named
FILE.tag Errors are displayed in the Twelf server buffer.

M-.
M-x find-tag TAG

Selects the buffer that the tag is contained in and puts point at its definition.

C-x 4 .
M-x find-tag-other-window TAG

Selects the buffer that TAG is contained in in another window and puts point at its
definition.

C-c q
M-x tags-query-replace FROM TO

Query-replace-regexp FROM with TO through all files listed in tags table.

C-c s

M-x tags-search REGEXP
Search through all files listed in tags table for match for REGEXP.

M-,
M-x tags-loop-continue

Continue last C-c s or C-c q command.

60 Twelf User's Guide

11.8 Twelf Timers

The following commands obtain the runtime statistics of the the Twelf server.

M-x twelf-timers-reset

Reset the Twelf timers.

M-x twelf-timers-show

Show and reset the Twelf timers.

M-x twelf-timers-check

Show the Twelf timers without resetting them.

11.9 Twelf-SML Mode

There is some support for interacting with Twelf, even when it is run within ML, rather than as
a stand-alone server. You can start an SML in which you intend to run Twelf with M-x twelf-sml;
the buffer will then be in Twelf-SML mode.

If you intend to send command to a buffer running Twelf in SML (rather than the Twelf server),
you can switch to a minor mode 2Twelf-SML with M-x twelf-to-twelf-sml.

M-x twelf-sml
Run an inferior Twelf-SML process in a buffer *twelf-sml*. If there is a process already
running in *twelf-sml*, just switch to that buffer. With argument, allows you to change
the program which defaults to the value of twelf-sml-program. Runs the hooks from
twelf-sml-mode-hook (after the comint-mode-hook is run).

M-x twelf-to-twelf-sml-mode
Toggles minor mode for sending queries to Twelf-SML instead of Twelf server.

C-c C-e
M-x twelf-sml-send-query

Send the current declaration to the inferior Twelf-SML process as a query. Prefix
argument means switch-to-twelf-sml afterwards.

C-c C-r
M-x twelf-sml-send-region

Send the current region to the inferior Twelf-SML process. Prefix argument means
switch-to-twelf-sml afterwards.

Chapter 11: Emacs Interface Q\

C-c RETURN

M-x twelf-sml-send-newline

Send a newline to the inferior Twelf-SML process. If a prefix argument is given, switches
to Twelf-SML buffer afterwards.

C-c ;

M-x twelf-sml-send-semicolon

Send a semi-colon to the inferior Twelf-SML process. If a prefix argument is given,
switched to Twelf-SML buffer afterwards.

C-c d

M-x twelf-sml-cd DIR

Make DIR become the Twelf-SML process' buffer's default directory and furthermore
issue an appropriate command to the inferior Twelf-SML process.

M-x twelf-sml-quit
Kill the Twelf-SML process.

11.10 Emacs Variables

A number of Emacs variables can be changed to customize the behavior of Twelf mode. The
list below is not complete; please refer to the Emacs Lisp sources in emacs/twelf .el for additional
information.

twelf-indent

Indent for Twelf expressions.

twelf-server-program

Default Twelf server program.

twelf-info-file

Default Twelf info file.

twelf-mode-hook

List of hook functions to run when switching to Twelf mode.

twelf-server-mode-hook

List of hook functions to run when switching to Twelf Server mode.

twelf-sml-program

Default Twelf-SML program.

twelf-sml-mode-hook

List of hook functions for Twelf-SML mode.

62 Twelf User's Guide

11.11 Syntax Highlighting

Twelf also provides syntax highlighting, which helps make Elf code more readable. This high-
lighting can use different colors and faces. Unfortunately, the necessary libraries are at present
not standardized between XEmacs and FSF Emacs, which means that highlighting support is less
general and less portable than the plain Twelf mode.

At present, highlighting has not been extensively tested in various versions of Emacs, but the
font-lock mode provided in 'emacs/twelf-f ont .el'seems to work at least in XEmacs version 19.16
and FSF Emacs version 19.34. The alternative highlight mode provided in 'emacs/twelf-hilit'

appears to work in FSF Emacs 19.34.

Unlike other font-lock modes, Twelf's fontification is not 'electric' in that it does not fontify as
one types. One has to explicitly issue a command to fontify the current Twelf declaration or current
buffer, since single-line highlighting is too error-prone and multi-line immediate highlighting is not

well supported in current versions of font lock mode.

C-c C-l
M-x twelf-font-fontify-decl

Fontifies the current Twelf declaration.

C-c 1
M-x twelf-font-fontify-buffer

Fontitifies the current buffer as Twelf code

M-x twelf-font-unfontify
Removes fontification from current buffer.

11.12 Emacs Initialization

If Twelf has been properly installed, you can use the Twelf's Emacs interface with the default

settings simply by adding the line

(load "directory/emacs/twelf-init .el")

to your '.emacs' file, where directory is the Twelf root directory. In order to customize the
behavior, you might copy the file 'emacs/twelf-init .el' or its contents and change it as appro-

priate.

Chapter 11: Emacs Interface 63

11.13 Command Summary

 Editing Commands
TAB twelf-indent-line
DEL backward-delete-char-untabify
M-C-q twelf-indent-decl

 Type Checking
C-c C-c twelf-save-check-config
C-c C-s twelf-save-check-file
C-c C-d twelf-check-declaration
C-c c twelf-type-const
C-c C-u twelf-server-display

 Error Tracking
C-c ' twelf-next-error
C-c = twelf-goto-error

 Syntax Highlighting
C-c C-l twelf-font-fontify-decl
C-c 1 twelf-font-fontify-buffer

 Server State
C-c < twelf-set
C-c > twelf-get
C-c C-i twelf-server-interrupt
M-x twelf-server
M-x twelf-server-configure
M-x twelf-server-quit
M-x twelf-server-restart
M-x twelf-server-send-command

 Info
C-c C-h twelf-info

 Timers
M-x twelf-timers-reset
M-x twelf-timers-show
M-x twelf-timers-check

 Tags (standard Emacs etags package)
M-x twelf-tag
M-. find-tag (standard binding)
C-x 4 . find-tag-other-window (standard binding)
C-c q tags-query-replace (Twelf mode binding)
C-c s tags-search (Twelf mode binding)
M-, tags-loop-continue (standard binding)

visit-tags-table, list-tags, tags-apropos

64 Twelf User's Guide

 Communication with inferior Twelf-SML process (not Twelf Server) —
M-x twelf-sml
C-c C-e twelf-sml-send-query
C-c C-r twelf-sml-send-region
C-c RET twelf-sml-send-newline
C-c ; twelf-sml-send-semicolon
C-c d twelf-sml-cd
M-x twelf-sml-quit

 Variables
twelf-indent

Chapter 12: Installation 65

12 Installation

At present, Twelf has been tested in SML of New Jersey (version 110 or higher) and MLWorks,
both of which implement Standard ML (revised 1997) and the Standard ML Basis Library. The
instructions below apply to a Unix system. For instructions for other architectures or updates please
check the file 'INSTALL' at the Twelf home page and in the Twelf root directory after unpacking
the distribution.

On a Unix system you unpack the sources with

gunzip twelf-1-2.tar.gz
tar -xf twelf-1-2.tar
cd twelf
make

This builds the Twelf server (see Chapter 10 [Twelf Server], page 51) for your current architecture
and makes it accessible as 'bin/twelf-server'. It also installs the Twelf Emacs interface (see
Chapter 11 [Emacs Interface], page 55), but you must add a line

(load "directory/emacs/twelf-init.el")

to your '.emacs' file, where directory is the root directory into which you installed Twelf. Note
that the Twelf installation cannot be moved after it has been compiled with make, since absolute
pathnames are built into the executable scripts.

Note that the Twelf server presently only works with Standard ML of New Jersey, since interrupt
handling is implementation specific.

If you would like to use Twelf as a structure in SML, you can then call

make twelf-sml

which creates 'bin/twelf-sml' for the Twelf-SML mode (see Section 11.9 [Twelf-SML Mode],
page 60). Calling make clean will remove temporary files created by the SML compiler, but not
the executable file.

SML of New Jersey (free, version 110 or higher)

See http://cm.bell-labs.com/cm/cs/what/smlnj/index.html

66 Twelf User's Guide

MLWorks (commercial)
See http://www.harlequin.com/products/ads/ml/ml.html

In MLWorks, you can presently only directly load the Twelf sources, using the file
'load.sml'.

ml works-basis start MLWorks with basis library in Twelf root directory
use "load.sml"; compile and load Twelf

Chapter 13: Examples 67

13 Examples

We give here only a brief reference to the examples in the 'examples/' subdirectory of the
distribution. Each example comes in a separate subdirectory whose name is listed below.

'arith' Associativity and commutative of unary addition.

'ccc' Cartesian-closed categories (currently incomplete).

'church-rosser'

The Church-Rosser theorem for untyped lambda-calculus.

'compile' Various compilers starting from Mini-ML.

'cut-elim'

Cut elimination for intuitionistic and classical logic.

'fol' Simple theorems in first-order logic.

'guide' Examples from Users' Guide.

'lp' Logic programming, uniform derivations.

'lp-horn' Horn fragment of logic programming.

'mini-ml' Mini-ML, type preservation and related theorems.

'polylam' Polymorphic lambda-calculus.

'prop-calc'

Natural deduction and Hubert propositional calculus

'units' Mini-ML extended with units (currently incomplete).

In each directory or subdirectory you can find a file 'sources. cf g' which defines the standard
configuration, usually just the basic theory. The 'test.cfg' which also defines an extended config-
uration with some test queries and theorems. Most examples also have a 'README' file with a brief
explanation and pointer to the literature.

68 Twelf User's Guide

Index 69

Index

%
'/.infix 10

'/.mode 27, 29

Xname 11

'/.postfix 10

'/.prefix 10

'/.prove 39

'/.query 19

'/.solve 20

^terminates 31

'/.theorem 39

A
add-hook 62

ambiguity 17

arguments, implicit 14

arguments, mutual 36

arithmetic 67

assumptions 23

auto-mode-alist 62

autoload 62

B
backquote, before variables 6

bool 51

bound variables , 9

c
call patterns 31

Cartesian-closed categories 67

case, upper and lower 6

characters, reserved 5

Church-Rosser theorem 67

clause selection 23

colors 62

commands, Emacs 63

commands, server 51

Conf ig. load 52

Conf ig. read 52

Configurations 45

current declaration 55

cut elimination 67

D
decl 53

declaration 7

declaration, currnt 55

declarations 7

declarations, mode 27

declarations, name preference 11

declarations, operator 10

declarations, termination 31

declarations, theorem 39

definitions 9

definitions, strict 16

display, of server buffer 56

documentation 59

E
editing -. 56

Emacs variables 61

environment parameters 47

error messages 18

error tracking 57

examples, from user's guide 67

executing proofs 42

existential quantifier 39

F
faces 62

file 51

file names 1

files, configuration 45

files, loading 46

filling 41

first-order logic 67

free variables 9

70 Twelf User's Guide

G
get 52

H
Hubert calculus 67

Horn logic, theory 67

I
id 51

identifiers, reserved 6

implicit arguments 14

implicit quantifiers 13

indentation 56

info file 59

initializing Twelf mode 62

input mode 27

installation 65

interrupt 58

K
kinds 7

L
lambda calculus example 24

lambda-calculus, polymorphic 67

lambda-calculus, untyped 67

left 10

LF 1

limit 51

load-path 62

loadFile 52

loading files 46

local assumptions 23

local parameters 23

logic programming 19

logic programming, theory 67

logical framework 1

M
M-x backward-delete-char-untabif y 56

M-x find-tag 59

M-x find-tag-other-window 59

M-x tags-loop-continue 59

M-x tags-query-replace 59

M-x tags-search 59

M-x twelf-check-declaration 57

M-x twelf-font-fontify-buffer 62

M-x twelf-f ont-f ontif y-decl 62

M-x twelf-font-unf ontif y 62

M-x twelf-get 58

M-x twelf-goto-error 57

M-x twelf-indent-decl 56

M-x twelf-indent-line 56

M-x twelf-indent-region 56

M-x twelf-info 59

M-x twelf-mode 55

M-x twelf-next-error 57

M-x twelf-reset 58

M-x twelf-save-check-conf ig 56

M-x twelf -save-check-f ile 56

M-x twelf-server 58

M-x twelf-server-conf igure 58

M-x twelf-server-display 57

M-x twelf-server-interrupt 58

M-x twelf-server-quit 58

M-x twelf-server-restart 58

M-x twelf-server-send-command 58

M-x twelf-set 58

M-x twelf-sml 60

M-x twelf-sml-cd 61

M-x twelf-sml-quit 61

M-x twelf-sml-send-newline 61

M-x twelf-sml-send-query 60

M-x twelf-sml-send-region 60

M-x twelf-sml-send-semicolon 61

M-x twelf-tag 59

M-x twelf-t imers-check 60

M-x twelf-t imers-reset 60

M-x twelf-timers-show 60

M-x twelf-to-twelf-sml-mode 60

M-x twelf-type-const 57

meta-logic 39

Mini-ML, compilation 67

Mini-ML, theory 67

Mini-ML, with units 67

ML implementations 65

Index 71

ML interface 45

MLWorks 65

mode checking 30

mode declaration, full form 29

mode declarations, short form 27

modes 27

mutual arguments 36

mutual recursion 36

N
name preferences 11

nat 51

natural deduction 11

none 10

o
objects 7

occurrences, rigid 15

occurrences, strict 15

open 45

operational semantics 23

operator declarations 10

order 31

order, lexicographic 35

order, simultaneous 35

order, subterm 33

OS. chDir 52

OS. exit 52

OS. getDir 52

output mode 27

P
parameters 23

parameters, environment 47

precedence 10

proof realizations 42

Q
quantifier, existential 39

quantifier, universal 39

quantifiers, implicit 13

queries 19

queries, interactive 20

quit 52

R
recursion 41

reserved characters 5

reserved identifiers 6

reset 52

right 10

rigid occurrences 15

running time 48

s
search strategy 42

semantics, operational 23

server 51

server buffer 56

server commands 51

server parameters, setting 58

server state 58

server timers 60

server types 51

set 52

setting server parameters 58

signature 7

signature TWELF 48

solving queries 20

splitting 41

Standard ML of New Jersey 65

statistics 48

strategy 51

strict definitions 16

strict occurrences 15

structure Twelf 48

subgoal selection 23

subterm order 33

syntax highlighting 62

T
tagging configurations 59

tags file 59

term 7

term reconstruction 13

termination checking 31

72 Twelf User's Guide

termination declarations 31

termination order 31

theorem declarations 39

theorem prover 39

Timers. check 52

Timers. reset 52

Timers. show 52

t iming statistics 48

top 53

top-level, query 20

t racking errors 57

Twelf home page 1

Twelf mode in Emacs 55

Twelf server 51

tuelf-indent 61

twelf-info-file 61

twelf-mode-hook 61

twelf-server-mode-hook 61

twelf-server-program 61

Twelf-SML mode 60

twelf-sml-mode-hook 61

twelf-sml-program 61

Twelf. ABORT 45

Twelf . chatter 47

Twelf .Conf ig. load 45

Twelf .Config.read 45

Twelf. doubleCheck 47

Twelf. loadFile 46

Twelf .OK 45

Twelf . OS. chDir 45

Twelf . OS. getDir 45

Twelf .Print.depth 47

Twelf .Print, implicit 47

Twelf .Print, indent 47

Twelf .Print, length 47

Twelf . Print. width 47

Twelf .Prover. FRS 42

Twelf .Prover .maxRecurse 41, 48

Twelf .Prover. maxSplit 41, 48

Twelf. Prover .RFS 42

Twelf .Prover. strategy 42, 47

Twelf .reset 46

Twelf . Timers. check 48

Twelf .Timers.reset 48

Twelf. Timers. show 48

type ascription 17

type checking, from Emacs 56

type families 7

type inference example 24

type reconstruction 13

types 7

types, server 51

typographical conventions 1

u
unification 23

universal quantifier 39

V
variable naming 11

variable scope 9

variables, bound 9

variables, Emacs 61

variables, free 9

